
 MAGMA – LAPACK for HPC  
 on Heterogeneous Architectures 
 
 
  
 
 

Stan Tomov   and   Jack Dongarra 
Research Director 
Innovative Computing Laboratory 
Department of Computer Science 
University of Tennessee, Knoxville 
 
 
 
Titan Summit 
Oak Ridge Leadership Computing Facility (OLCF) 
Oak Ridge National Laboratory, TN  
August 15, 2011 



Outline 

!  Motivation 
!  MAGMA ‒ LAPACK for GPUs 

!  Overview 
!  Methodology 
!  MAGMA with various schedulers 

!  MAGMA BLAS 
!  Current & future work directions 



Science and Engineering Drivers 
¨  Climate Change: Understanding,

 mitigating and adapting to the effects
 of global warming 
!  Sea level rise 
!  Severe weather 
!  Regional climate change 
!  Geologic carbon sequestration 

¨  Energy: Reducing U.S. reliance on
 foreign energy sources and reducing the
 carbon footprint of energy production 
!  Reducing time and cost of reactor design

 and deployment 
!  Improving the efficiency of combustion

 energy sources 
¨  National Nuclear Security: Maintaining a

 safe, secure and reliable nuclear
 stockpile 
!  Stockpile certification 
!  Predictive scientific challenges 
!  Real-time evaluation of urban nuclear

 detonation 
Accomplishing these missions requires exascale resources. 

6 



Simulation enables fundamental  
advances in basic science 

¨  Nuclear Physics 
!  Quark-gluon plasma & nucleon structure 
!  Fundamentals of fission and fusion

 reactions 
¨  Facility and experimental design 

!  Effective design of accelerators 
!  Probes of dark energy and dark matter  
!  ITER shot planning and device control 

¨  Materials / Chemistry 
!  Predictive multi-scale materials modeling:

 observation to control 
!  Effective, commercial, renewable energy

 technologies, catalysts and batteries 
¨  Life Sciences 

!  Better biofuels 
!  Sequence to structure to function 

Slide 7 

ITER 

ILC 

Structure of 
nucleons 

These breakthrough scientific discoveries
 and facilities require exascale applications
 and resources. 



Future Computer Systems 
•  Most likely be a hybrid design 

•  Think standard multicore chips and 
accelerator (GPUs) 

•  Today accelerators are attached 
•  Next generation more integrated 
•  Intel’s MIC architecture “Knights Ferry” and 

“Knights Corner” to come. 
•  48 x86 cores 

•  AMD’s Fusion in 2012 - 2013 
•  Multicore with embedded graphics ATI 

•  Nvidia’s Project Denver plans to develop               
an integrated chip using ARM                      
architecture in 2013. 



  Must rethink the design of our software 
 

 Another disruptive technology 
•  Similar to what happened with cluster computing  
  and message passing 
 

 Rethink and rewrite the applications, algorithms, and            
  software 

  Numerical libraries for example will change 
  For example, both LAPACK and ScaLAPACK will     
  undergo major changes to accommodate this 

Major change to Software 



Software/Algorithms follow hardware evolution in time 

LINPACK (70’s) 

(Vector operations) 

Rely on  

   - Level-1 BLAS 

operations 

LAPACK (80’s) 

(Blocking, cache 

friendly) 

Rely on  

   - Level-3 BLAS 

operations 

ScaLAPACK (90’s) 

(Distributed Memory) 

Rely on  

   - PBLAS Mess Passing 

PLASMA (00’s) 

New Algorithms  

(many-core friendly) 

Rely on  

   - a DAG/scheduler 

   - block data layout 

   - some extra kernels 

Those new algorithms  
    - have a very low granularity, they scale very well (multicore, petascale computing, … ) 
    - removes of dependencies among the tasks, (multicore, distributed computing) 
    - avoid latency (distributed computing, out-of-core) 
    - rely on fast kernels  
 Those new algorithms need new kernels and rely on efficient scheduling algorithms. 

A Next Generation of Software 

 MAGMA 
 Hybrid Algorithms 
 (heterogeneity friendly)  

Rely on 
 - hybrid scheduler (of DAGs) 
 - hybrid kernels  
    (for nested parallelism) 
 - existing software infrastructure 



1024 3072 5184 7040 9088
0

40

80

120

160

200

240

GPU 
(MAGMA)
CPU 
(LAPACK)

Matrix Size

G
Fl

op
/s

1024 3072 5184 7040
0

10
20
30
40
50
60
70
80
90

GPU 
(MAGMA)
CPU 
(LAPACK)

Matrix Size
G

Fl
op

/s

LU Factorization in double precision (DP) 
[ for solving a dense linear system ] 

Hessenberg factorization in DP 
[ for the general eigenvalue problem ] 

1,090 MFlop/W* 

55 MFlop/W* 

       GPU   Fermi C2050 [448 CUDA Cores @ 1.15 GHz ]                                CPU     AMD ISTANBUL   
                 + Intel Q9300 [ 4 cores @ 2.50 GHz]                                                            [ 8 sockets x 6 cores (48 cores) @2.8GHz ] 
                  DP peak               515 + 40 GFlop/s                                                             DP peak                 538 GFlop/s  
                  System cost ̃ $3,000                                                                                  System cost  ̃ $30,000  
                Power *       ̃      220 W                                                                               Power *         ̃     1,022 W 
 

                   *    Computation consumed power rate (total system rate minus idle rate), measured with KILL  A  WATT  PS, Model P430 

HPC @ 1/10th the cost & 1/20th the power 



!  MAGMA: a collection of next generation linear algebra (LA) libraries to  
                achieve the fastest possible time to  an accurate solution  
                on hybrid/heterogeneous architectures 
Homepage: http://icl.cs.utk.edu/magma/ 
 

!  Key features 

-  Top performance and high accuracy (LAPACK compliant) 

-  Multiple precision arithmetic (S/D/C/Z & mixed) 

-  Hybrid algorithms using both multicore CPUs and accelerators (GPUs)  
 

!  MAGMA developers/collaborators 

-  U of Tennessee, Knoxville;  U of California, Berkeley;  U of Colorado, Denver 

-  INRIA Bordeaux - Sud Ouest & INRIA Paris ‒ Saclay, France; KAUST, Saudi Arabia 

-  Community effort [similarly to the development of LAPACK / ScaLAPACK] 

Matrix Algebra on GPU and Multicore Architectures 
(MAGMA) 



Challenges of using GPUs 
! High levels of parallelism 

Many GPU cores  
[ e.g. Tesla C2050 (Fermi) has 448 CUDA cores ] 
 

! Hybrid/heterogeneous architectures 
Match algorithmic requirements to architectural 
strengths 
[ e.g. small, non-parallelizable tasks to run on CPU, large and parallelizable on 
GPU ] 
 

! Compute vs communication gap 
Exponentially growing gap; persistent challenge 
[ Processor speed improves 59%, memory bandwidth 23%, latency 5.5% ] 
[ on all levels, e.g. a GPU Tesla C1070 (4 x C1060) has compute power of  
  O(1,000) Gflop/s but GPUs communicate through the CPU using  
  O(1) GB/s connection ]  



MAGNUM / Rectangular / PLASMA Tile Algorithms 
 
 

MAGMA Software Stack 
 

single 

multi 

distr. 

C P U G P U H Y B R I D 

BLAS 

BLAS 

MAGMA BLAS 

LAPACK 

CUDA / OpenCL for GPUs; MIC  

Linux, Windows, Mac OS X   ¦   C/C++, Fortran  ¦  Matlab, Python 

MAGMA SPARSE 

MAGMA 1.0 

StarPU, DAGuE, Static (+Dynamic) PLASMA, Quark 

LAPACK Algorithms and Tile Kernels  

Tile & LAPACK Algorithms 



  35+ algorithms are developed (total of 130+ routines) 
  Every algorithm is in 4 precisions  

      (s/c/d/z, denoted by X) 
 - One-sided factorizations and solvers 

 - Two-sided factorizations and eigen/singular-value solvers       

  There are 3 mixed precision algorithms  
      (zc & ds, denoted by XX) 

  These are hybrid algorithms 
 - Expressed in terms of BLAS 

  Support is for single CUDA-enabled NVIDIA GPU, 
either Tesla or Fermi 

  MAGMA BLAS  
  A subset of GPU BLAS, optimized for Tesla and Fermi GPUs 

MAGMA 1.0  



1.   Xgetrf LU factorization; CPU interface 
2.   Xgetrf_gpu LU factorization; GPU interface 
3.   Xgetrf_mc LU factorization on multicore (no GPUs)  
4.   Xpotrf Cholesky factorization; CPU interface 
5.   Xpotrf_gpu Cholesky factorization; GPU interface 
6.   Xpotrf_mc Cholesky factorization on multicore (no GPUs)  
7.   Xgeqrf QR factorization; CPU interface 
8.   Xgeqrf_gpu QR factorization; GPU interface; with T 

matrices stored 

9.   Xgeqrf2_gpu QR factorization; GPU interface; without T 
matrices 

10. Xgeqrf_mc QR factorization on multicore (no GPUs) 
11. Xgeqrf2 QR factorization; CPU interface 
12. Xgeqlf QL factorization; CPU interface 
13. Xgelqf LQ factorization; CPU interface 

One-sided factorizations 

MAGMA 1.0  



14. Xgetrs_gpu Work precision; using LU factorization; GPU interface 

15. Xpotrs_gpu Work precision; using Cholesky factorization; GPU 
interface 

16. Xgels_gpu Work precision LS; GPU interface  

17. XXgetrs_gpu Mixed precision iterative refinement solver;  
Using LU factorization; GPU interface 

18. XXpotrs_gpu Mixed precision iterative refinement solver; 
Using Cholesky factorization; GPU interface 

19. XXgeqrsv_gpu Mixed precision iterative refinement solver; 
Using QR on square matrix; GPU interface 

Linear solvers 

MAGMA 1.0  



20. Xgehrd Reduction to upper Hessenberg form;  
with T matrices stored; CPU interface 

21. Xgehrd2 Reduction to upper Hessenberg form;  
Without the T matrices stored; CPU interface 

22. Xhetrd Reduction to tridiagonal form; CPU interface 

23. Xgebrd Reduction to bidiagonal form; CPU interface 

Two-sided factorizations 

MAGMA 1.0  



24. Xungqr Generates Q with orthogonal columns as the product of 
elementary reflectors (from Xgeqrf); CPU interface 

25. Xungqr_gpu Generates Q with orthogonal columns as the product of 
elementary reflectors (from Xgeqrf_gpu); GPU interface 

26. Xunmtr Multiplication with the orthogonal matrix, product of 
elementary reflectors from  Xhetrd; CPU interface 

27. Xunmtr_gpu Multiplication with the orthogonal matrix, product of 
elementary reflectors from  Xhetrd; GPU interface 

28. Xunmqr Multiplication with orthogonal matrix, product of elementary 
reflectors from Xgeqrf; CPU interface 

29. Xunmqr_gpu Multiplication with orthogonal matrix, product of elementary 
reflectors from Xgeqrf_gpu; GPU interface 

30. Xunghr Generates Q with orthogonal columns as the product of 
elementary reflectors (from Xgehrd); CPU interface 

31. Xunghr_gpu Generates Q with orthogonal columns as the product of 
elementary reflectors (from Xgehrd); GPU interface 

Generating/applying orthogonal matrices 

MAGMA 1.0  



32. Xgeev Solves the non-symmetric eigenvalue problem; 
CPU interface 

33. Xheevd Solves the Hermitian eigenvalue problem;  
Uses devide and conquer; CPU interface 

34. Xgesvd SVD; CPU interface 

Eigen/singular-value solvers 

•  Currently, these routines have  
GPU-acceleration for the 

-  two-sided factorizations used and the 
-  Orthogonal transformation related to them  

(matrix generation/application from the   
  previous slide) 

MAGMA 1.0  



MAGMA BLAS 

  Subset of BLAS for a single NVIDIA GPU 
  Optimized for MAGMA specific 

algorithms 
  To complement CUBLAS on special 

cases 



1. Xgemv_tesla General matrix-vector product for Tesla 

2. Xgemv_fermi General matrix-vector product for Fermi 

3. Xsymv_ tesla Symmetric matrix-vector product for Tesla 

4. Xsymv_fermi Symmetric matrix-vector product for Fermi 

Level 2 BLAS 

MAGMA BLAS 



5.   Xgemm_tesla General matrix-matrix product for Tesla 

6.   Xgemm_fermi General matrix-matrix product for Fermi 

7.   Xtrsm_ tesla Solves a triangular matrix problem on Tesla 

8.   Xtrsm_fermi Solves a triangular matrix problem on Fermi 

9.   Xsyrk_tesla Symmetric rank  k update for Tesla 

10. Xsyr2k_tesla Symmetric rank 2k  update for Tesla 

Level 3 BLAS 

  CUBLAS GEMMs for Fermi are based on the 
MAGMA implementation 

  Further improvements 
– Autotuned GEMM for Fermi (J.Kurzak) 
– ZGEMM from 308 Gflop/s is now 341 Gflop/s 

MAGMA BLAS 



Other routines 
11.   Xswap LU factorization; CPU interface 

12.   Xlacpy LU factorization; GPU interface 

13.   Xlange LU factorization on multicore (no GPUs)  

14.   Xlanhe Cholesky factorization; CPU interface 

15.   Xtranspose Cholesky factorization; GPU interface 

16.   Xinplace_transpose Cholesky factorization on multicore (no GPUs)  

17.   Xpermute QR factorization; CPU interface 

18.   Xauxiliary QR factorization; GPU interface; with T matrices stored 

MAGMA BLAS 



Methodology overview  

  MAGMA uses HYBRIDIZATION methodology based on 
–  Representing linear algebra algorithms as collections  

of TASKS and DATA DEPENDENCIES among them 
–  Properly SCHEDULING tasks' execution over  

multicore and GPU hardware components 
 

  Successfully applied to fundamental 
linear algebra algorithms 
–  One and two-sided factorizations and solvers 
–  Iterative linear and eigen-solvers 

 

  Productivity 
–  High-level 
–  Leveraging prior developments 
–  Exceeding in performance homogeneous solutions 

Hybrid CPU+GPU algorithms 
(small tasks for multicores and large  
      tasks for GPUs) 



Statically Scheduled One-Sided Factorizations 
(LU, QR, and Cholesky) 

  Hybridization 
–  Panels (Level 2 BLAS) are factored on CPU using LAPACK 
–  Trailing matrix updates (Level 3 BLAS) are done on the  

GPU using “look-ahead”  
 

  Note 
–  Panels are memory bound but are only O(N2) flops and can be overlapped  

with the O(N3) flops of the updates 
–  In effect, the GPU is used only for the high-performance Level 3 BLAS 

updates,  
i.e., no low performance Level 2 BLAS is scheduled on the GPU 
 



A hybrid algorithm example  

  Left-looking hybrid Cholesky factorization in MAGMA 1.0 
 
 
 
 
 
 
 
 
 
 
 

  The difference with LAPACK – the 3 additional lines in red 
  Line 10 (done on CPU) is overlapped with work on the GPU (line 7)  



Results – one sided factorizations 

FERMI       Tesla C2050: 448 CUDA cores @ 1.15GHz 
                  SP/DP peak is 1030 / 515 GFlop/s  
 
ISTANBUL AMD 8 socket 6 core (48 cores) @2.8GHz 
                  SP/DP peak is 1075 / 538 GFlop/s    

LU Factorization in double precision 

!  Similar results for Cholesky & QR 
!  Fast solvers (several innovations) 
   - in working precision, and  
   - mixed-precision iter. refinement 
  based on the one-sided factor. 1024 3072 5184 7040 9088

0

40

80

120

160

200

240 FERMI MAGMA
ISTANBUL:          
     PLASMA
    MKL 11.0
    LAPACK

Matrix Size

G
Fl

op
/s



Results – linear solvers 

FERMI       Tesla C2050: 448 CUDA cores @ 1.15GHz 
                  SP/DP peak is 1030 / 515 GFlop/s 

MAGMA LU-based solvers on Fermi (C2050) 

960 3200 5120 7040 8960 11200 13120
0

50

100

150

200

250

300

350

400

450

500
Single Prec
Double Prec
Iter Ref

Matrix size

G
Fl

op
/s

!   Similar results for Cholesky & QR 



Results – two sided factorizations 

FERMI       Tesla C2050: 448 CUDA cores @ 1.15GHz 
                  SP/DP peak is 1030 / 515 Gflop/s  
                   [ system cost ̃ $3,000 ]  
 
ISTANBUL AMD 8 socket 6 core (48 cores) @2.8GHz 
                  SP/DP peak is 1075 / 538 Gflop/s  
                  [ system cost ̃ $30,000 ]    

Hessenberg Factorization in double precision  
[ for the general eigenvalue problem ] 

!  Similar accelerations for the  
  bidiagonal factorization [for SVD] &  
  tridiagonal factorization [for the  
  symmetric eigenvalue problem] 
 
!  Similar acceleration (exceeding 10x) 
  compared to other top-of-the-line  
  multicore systems (including  
  Nehalem-based) and libraries 
  (including MKL, ACML) 

1024 2048 3072 4032 5184 6016 7040 8064
0

10
20
30
40
50
60
70
80
90

FERMI MAGMA
LAPACK + 
GOTO BLAS

Matrix Size

G
Fl

op
/s



GPU + Multicore one-sided factorizations 

Hybrid	  QR	  factoriza0on	  trace	  for	  matrix	  of	  size	  3360	  x	  3360	  

  Parallel, dynamically scheduled panel 
factorizations (w/ QUARK) on multicore 

  Parallel updates on multicore 
  Parallel updates on GPU 

 

w/ Mitch Horton 



A QR for GPU + Multicore 



Multicore + multiGPU tiled algorithms 

•  Reuse already developed kernels 
  Hybrid MAGMA 1.0 for single GPU 
  PLASMA for multicore 

•  We have developed tiled one-sided 
factorization algorithms 

•  Use various run time systems to 
schedule the kernels’ execution 
  StarPU (Dynamic scheduling on a node) 

  QUARK (Dynamic on multicore node from PLASMA) 

  Static + Dynamic scheduling 
  DAGuE 



Tiled algorithms with StarPU  

// Sequential Tile Cholesky 
FOR k = 0..TILES-1 
     DPOTRF(A[k][k]) 
     FOR m = k+1..TILES-1 

    DTRSM(A[k][k], A[m][k])        
   FOR n = k+1..TILES-1 
         DSYRK(A[n][k], A[n][n]) 

              FOR m = n+1..TILES-1 
     DGEMM(A[m][k], A[n][k], A[m][n]) 

// Hybrid Tile Cholesky 
FOR k = 0..TILES-1 
    starpu_Insert_Task(DPOTRF, …) 
    FOR m = k+1..TILES-1 
        starpu_Insert_Task(DTRSM, …) 
        FOR n = k+1..TILES-1 
            starpu_Insert_Task(DSYRK, …) 
            FOR m = n+1..TILES-1 
                starpu_Insert_Task(DGEMM, …) 

  Productivity ‒ easy to develop parallel multicore & multiGPU  
  algorithms from sequential algorithms 

 
  Developed are LU, QR, and Cholesky factorization algorithms 
  The kernels needed are available to use w/ other schedulers 

w/ E. Aggulo, C. Augonnet, M. Faverge, H. Ltaief  



   QR factorization 
-  System: 16 CPUs (AMD) + 4 GPUs (C1060) 

MAGMA with StarPU 



Static + Dynamic Scheduling 
•  Dynamic schedulers provide ease of 

development 
•  Static scheduling allows more flexible design, 

e.g., to minimize communication 
•  We have explored combination of  

  Static data distribution and communication between node 
  Dynamic scheduling within a node 

•  Developed are QR and Cholesky for single and 
distributed multicore and multiGPU nodes 

w/ Fengguang Song  



Distributed GPUs 

75 Tflops 

0 

20 

40 

60 

80 

100 

120 

1 2 4 8 16 32 64 100 

O
ve

ra
ll 

Tf
lo

ps
 

Number of Nodes 

DGEMM UB 
Distri. GPUs 

  on Keeneland nodes ‒ 12 CPU cores and 3 Fermi GPUs 

Weak scalability ‒ Cholesky factorization in DP 



Complete Eigensolvers 
Generalized Hermitian-definite eigenproblem  solver ( A x = λ B x ) 

[double complex arithmetic; based on Divide & Conquer; eigenvalues + eigenvectors]  

       GPU   Fermi C2050 [448 CUDA Cores @ 1.15 GHz ]                                CPU     AMD ISTANBUL   
                 + Intel Q9300 [ 4 cores @ 2.50 GHz]                                                            [ 8 sockets x 6 cores (48 cores) @2.8GHz ] 
                  DP peak               515 + 40 GFlop/s                                                             DP peak                 538 GFlop/s  
                  System cost ̃ $3,000                                                                                  System cost  ̃ $30,000  
                Power *       ̃      220 W                                                                               Power *         ̃     1,022 W 
 

                   *    Computation consumed power rate (total system rate minus idle rate), measured with KILL  A  WATT  PS, Model P430 

0 

20 

40 

60 

80 

100 

120 

140 

2000 2500 3000 3500 4000 4500 5000 5500 6000 

Ti
m

e 
(s

) 

Matrix size 

CPU (MKL) 

GPU (MAGMA) 

w/ R. Solca, T. Schulthess, W. Sawyer,  
     A. Haidar, C. Vomel 



576 1152 1728 2304 2880 3456 4032 4608 5184 5760
0

100

200

300

400

500

600

700

800

MAGMA      
M3 CGEMM
MAGMA
CUBLAS 3.1

Matrix size

G
F

lo
p/

s

MAGMA BLAS 

63% of peak 

!   Performance critically depend on BLAS  
!   On going efforts on developing highly optimized BLAS for NVIDIA GPUs in CUDA   

!   CUBLAS 3.2 GEMM are based on the MAGMA kernels   
!   TRSM and other Level 3 BLAS based on GEMM 
!   HEMV / SYMV (accepted at SC11) 

!   Auto-tuning has become more important … 

512 1024 1536 2048 2560 3072 3584 4096
0

50

100

150

200

250

300

350

400

MAGMA      
M3 ZGEMM
MAGMA
CUBLAS 3.1

Matrix Size

G
F

lo
p/

s

DGEMM and M3 ZGEMM SGEMM and M3 CGEMM 

Tesla C2050 (Fermi): 448 CUDA cores @ 1.15GHz, theoretical SP peak is 1.03 Tflop/s, DP is 515 GFlop/s) 

58% of peak 

w/ R. Nath, P. Du, T. Dong  



Autotuning 
•  Autotuning framework 

  will define stencils for kernels 
  Generate implementations while  

pruning the search space  
  Empirically find the fastest implementation 

! "!!! #!!! $!!! %!!! &!!!!

!

&!!

"!!

'!!

#!!

(!!

$!!

)!!

%!!

*!!

+,-./012/34

5
67
8
9
:2

;5<==

>5<==

?5<==

@5<==

Performance of GEMM on Fermi (C2050)  

 
  ZGEMM improved significantly 
   compared to CUBLAS 

  from 308 to 341 Gflop/s 
  Improvement up to 2x on  
   some specific matrices 
   (e.g., of “rectangular” shape) 

An example ‒ Autotuning GEMM on Fermi (C2050):  

w/ J. Kurzak, P. Luszczek 

!
"
!
!

#
!
!

$
!
!

%
!
!

&
!
!

'
(
)

*
+
,-
.
/-
0
1
,2
1
'
34

!
""
"!

"#

!
""
"!

"#
$

!
$
"!

"#
$

!
$
"!

"#

!
""
"!

"#

!
""
"!

"#
$

!
$
"!

"#
$

!
$
"!

"#

!
""
"!

"#

!
""
"!

"#
$

!
$
"!

"#
$

!
$
"!

"#

!
""
"!

"#

!
""
"!

"#
$

!
$
"!

"#
$

!
$
"!

"#

5
6
7
8

8

9
6
7
8

8

:
6
7
8

8

;
6
7
8

8



Future directions 
  Hybrid algorithms 

-  Further expend functionality, 
including support for certain sparse LA algorithms 

-  New highly parallel algorithms of optimized communication 
and synchronization 

  OpenCL support (to increase MAGMA’s portability) 
-  To be derived from OpenCL BLAS 

  MIC support 
  Autotuning 

-  On both high level algorithms & BLAS 

  Multi-GPU algorithms, including distributed 
-  Scheduling  
-  Further expand functionality  

 



Collaborators / Support 

  MAGMA [Matrix Algebra on GPU 
and Multicore Architectures] team 
http://icl.cs.utk.edu/magma/ 
 

  PLASMA [Parallel Linear Algebra 
for Scalable Multicore  
Architectures] team 
http://icl.cs.utk.edu/plasma 
 

  Collaborating partners 
     University of Tennessee, Knoxville 

University of California, Berkeley 
University of Colorado, Denver 
 
INRIA, France 
KAUST, Saudi Arabia 

 
 


